3.5 MATRIX MULTIPLICATION

The purpose of this section is to further develop the concept of matrix multiplication as introduced in the previous section. In order to do this, it is helpful to begin by composing a single row with a single column. If

$$
\mathbf{R}=\left(\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{n}
\end{array}\right) \quad \text { and } \quad \mathbf{C}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

the standard inner product of \mathbf{R} with \mathbf{C} is defined to be the scalar

$$
\mathbf{R C}=r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{n} c_{n}=\sum_{i=1}^{n} r_{i} c_{i} .
$$

For example,

$$
\left(\begin{array}{lll}
2 & 4 & -2
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=(2)(1)+(4)(2)+(-2)(3)=4
$$

Recall from (3.4.1) that the product of two 2×2 matrices

$$
\mathbf{F}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \text { and } \quad \mathbf{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

was defined naturally by writing

$$
\mathbf{F G}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
a A+b C & a B+b D \\
c A+d C & c B+d D
\end{array}\right)=\mathbf{H}
$$

Notice that the (i, j)-entry in the product \mathbf{H} can be described as the inner product of the $i^{t h}$ row of \mathbf{F} with the $j^{t h}$ column in \mathbf{G}. That is,

$$
\begin{array}{ll}
h_{11}=\mathbf{F}_{1 *} \mathbf{G}_{* 1}=\left(\begin{array}{ll}
a & b
\end{array}\right)\binom{A}{C}, & h_{12}=\mathbf{F}_{1 *} \mathbf{G}_{* 2}=\left(\begin{array}{ll}
a & b
\end{array}\right)\binom{B}{D}, \\
h_{21}=\mathbf{F}_{2 *} \mathbf{G}_{* 1}=\left(\begin{array}{ll}
c & d
\end{array}\right)\binom{A}{C}, & h_{22}=\mathbf{F}_{2 *} \mathbf{G}_{* 2}=\left(\begin{array}{ll}
c & d
\end{array}\right)\binom{B}{D} .
\end{array}
$$

This is exactly the way that the general definition of matrix multiplication is formulated.

